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Aspects of stationary variational principles for the Laplace-transformed 
Liouville equation are discussed. Projection techniques are used to derive 
new stationary principles applicable to the space orthogonal to the space 
spanned by functions occurring in the conservation laws. As a result, any 
trial function automatically leads to results satisfying the conservation laws. 
The procedure is also applied to the parity-even and parity-odd distributions 
which obey equations governed by the square of the Liouvitle operator. 
The technique is extended to eliminate the one-body additive contribution 
to the solution exactly. Finally, the ideas of the moment method, which leads 
to the continued-fraction representation of autocorrelation functions, are 
applied to variational principles. We find continued-fraction variational 
principles such that  a zero trial function yields the usual representation. 
However, a trial function representing noninteracting particles contains 
the results of the moment  method and in addition yields the exact analytic 
behavior for free particles. 
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1. I N T R O D U C T I O N  

In the two previous papers of this series (1,2) we discussed an approach to 
finding approximate solutions of the Liouville equation. We worked directly 
with trial functions, i.e., approximations to the N-particle distribution 
function that fit initial conditions exactly in the linear response domain. 
Each assumption as to the form of the N-particle distribution fixes the reduced 
distribution functions and the relations between them. This then amounts to 
a truncation of the hierarchy, although, of course, all the reduced distribu- 
tions are determined and are exact at t = O. 

In the first paper we worked with approximations to FN that were 
ordered according to a scheme of one-body additive, two-body additive 
terms, etc., in the particle variables. We showed how this led to closures of 
the BBGKY hierarchy TM for time-dependent distribution functions. In 
addition, we were able to use the exact hierarchy for the equilibrium cor- 
relation functions to eliminate the interparticle potential energy from the 
equations for the time-dependent correlation functions. This provides 
"renormalized" theories where the time-dependent functions are expressed in 
terms of the static correlation functions. 

In the second paper the theory was reformulated by using a stationary 
variational principle for the Laplace-transformed Liouville equation. The 
renormalized theories are an immediate consequence of integration by parts 
in the variational functional. In addition, it was shown that the one-body 
additive part could always be exactly eliminated from the functional, resulting 
in a modified propagator for the part of the distribution function that is 
orthogonal to the one-body additive terms. 

A second line of development was initiated in Part II. In the absence 
of external magnetic fields, at any instant the distribution function consists 
of a symmetric or even-parity part that is unchanged under the operation 
p~-+ --p~ (or alternatively under the operation q~--+ --q~), and of an odd- 
parity part that changes sign. Either one of these parts can be exactly elimi- 
nated in favor of the other. We arrive at a variational principle for one of the 
parts that is governed by the operator L 2. We showed that the one-body 
additive approximation can be improved when the assumption is made 
only on the even-parity (or symmetric) part of the distribution function. 

In the present paper we continue the formal analysis of the stationary 
variational principles. The strategy is to use projection operators to find 
modified principles that incorporate exact features of the problem auto- 
matically. It is then impossible to make approximations that violate the 
exact features. In Section 2 we work with the odd-parity part of the distribu- 
tion functions and project out the vectors that guarantee satisfaction of the 
conservation laws. The modified principle applies then to trial functions in 
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an orthogonal space. In Section 3 we present a general treatment of the one- 
body theory with arbitrary initial conditions. In Section 4 we project out the 
entire one-body additive part in the even- and odd-parity functionals. We 
construct the modified operator that acts in the orthogonal space. We carried 
out the elimination of the one-body part for the renormalized form of the 
theory involving the Liouville operator in Ref. 2, Section 3. 

In Section 5 we introduce continued-fraction variational principles. 
Following Mori, (4) we use the ideas of the analysis of  the classical moment 
problem. (5) We construct a finite vector space by starting with the initial 
distribution function and applying powers of the Liouville operator or of its 
square to generate a sequence of vectors. The vectors are then normalized 
and made orthogonal to each other. This is an approach that explicitly 
accounts for the short-time behavior of  the distribution function, i.e., the 
first few frequency moments of the autocorrelation function. The distribution 
function can then be written as a linear combination of  the vectors of the 
finite space, together with an orthogonal part. By varying the amplitudes of 
the vectors of the finite space for an arbitrary orthogonal part we gain a new 
form for the variational principle. The new form can be written as a con- 
tinued fraction. 

If  the trial distribution is to take the orthogonal pait  equal to zero at any 
stage, we have the Mori approximant to the autocorrelation function. There 
is, however, a great advantage to the variational approach. For  example, 
one can start with a noninteracting distribution as the trial distribution and 
find the projection orthogonal to the finite vector space. The resulting auto- 
correlation function has the correct free-streaming behavior, i.e., a branch 
cut in the ~ plane in addition to the Lorentzian-type structure of the usual 
moment method. In the summary in Section 6 we outline further extensions 
of the present approach. 

2. C O N S E R V A T I O N  LAWS 

In the analysis of the Laplace-transformed Liouville equation, namely 

(a -1- L ) F  = F o (1) 

the conservation laws are of paramount importance. Let 

N 

p(k) = ~ e i~q~' 

a = l  

be the Fourier component of  the density. Then the continuity equation is 

(p*, (~ + L ) F )  = (p*, F0) (2) 
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Here the notation is (A, B)  ~ f dF  (A �9 B) Oh. In like manner, the current 
density has the Fourier components 

j . (k)  = ~ (p~ . /m)  e ~k'q~, /z ---- 1, 2, 3 (3) 

and obeys the three conservation laws 

( j , * ,  (a -r L ) F )  = <j ,* ,  F0) (4) 

There is also a conservation law for the energy density which is some- 
what arbitrary because of the ambiguity in the localization of potential 
energy. 

We would like to find an improved variational principle in which the 
conservation laws are automatically satisfied. By this we mean that if a trial 
function is inadequate, we find it impossible to obtain a stationary value. I f  
the trial function is general enough, the procedure should reject the part of  
the trial that is not compatible with the conservation laws. 

It is easiest to satisfy the conservation laws when we use the odd-parity 
(antisymmetric) part of the distribution function. Here F A is varied. For  any 
approximate F* the symmetric part of the distribution is given as 

F s = - - ( l /a )  L F  A q- (l/a) Fo s (5) 

The exact F A obeys 

(a ~ - -  L 2) F A • aFo A - -  LFo s (6) 

Now let QS(p 1 ... qN) be an even-parity function. Then 

a(QS*,  F s )  q_ (QS*, L F  A) = (QS*, FoS) (7) 

is the transport equation for QS. We see that with any approximate form 
for F A the use of the associated F s implies that the transport equation is 
automatically satisfied. In particular, the continuity equation and the energy 
density transport equation are automatically obeyed. It only remains to 
find approximations to F A such that the momentum transport equations 

( j ,* (k) ,  (a = --  L s) F A) = ( j , * ,  aFo A - -  LFoS)  (8) 

are obeyed. The trial functions must satisfy the initial condition 

a - +  ~ :  V ~  - +  ( F o ~ / a )  - -  ( L r o S / a  =) 

In certain cases it is easy to satisfy the momentum transport equation. 
For  example, in the density autocorrelation function problem Fo A = 0: 

- - L F o  s = i k .  j(k) (9) 
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The trial 

F A = B(k, cr 7 ik "j (10) 

satisfies the balance equation if 

B ( j  ,(kT, (~2 _ L27 k -j(k)) = ( j , * ,  k - j )  (117 

The rotational invariance of L 2 makes it possible to satisfy the equation with 
a scalar B. Taking k = (0, 0, k), we find a satisfactory B. 

For  work with general trial functions it is important to incorporate 
momentum conservation in a variational principle. Consider the case where 
F0 A = 0, and start from the normalized principle 

jA = ( F  A *, L F o ) ( F  A, L F o , ) / ( F  A *, (a2 _ L 2) F A) (12) 

When F x satisfies Eq. (6) exactly, the value of this functional is 

[jA] = ( F  A, LFo*)  (13) 

For  example, if F0 = p(k) = Fo s, we have 

LFo* : :  - - i k .  j(--k),  [JA] = (__F A, k "  j ( - -k) )  

Thus we have an estimate of  the Laplace transform of the longitudinal 
current Fourier component. In the present form, where F A is varied, F s is 
limited to F A by Eq. (5). Consequently, 

[jA] = ~(F, p*(k)) -- (p(k), p*(k)) (147 

Thus [JA] allows one to compute the Laplace transform of  the density auto- 
correlation function. For  an approximate trial F A the quantity jA gives an 
estimate of this quantity in the sense afforded by a stationary variational 
principle. 

The current components have the normalization and orthogonality 
properties 

(Ju*(k),j~(kT) = 3..v(m/O), 0 = 1 / K T  (15) 

Let us introduce three normalized vectors 

We now write 

~ ,  = L (k ) (O /m)  a/2 (16) 

3 

FA -- Z B, gt- + Ga (17) 

where G A is orthogonal to each of  the W, .  It will be convenient to take 
k = (0, 0, I,). 
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Let us now introduce the form for F A into the variational principle. The 
numerator contains a factor (for the density autocorrelation function case) 

<F ~, LFo*> = ikBs(m/O)Z/~ (is) 

together with its complex conjugate. We have used the orthogonality of G A 
to the kg.. The denominator may be written as 

8 3 

A =- <F a*, (a ~ - -  L ~) F A> ~- Z B . * B . M . .  - -  Z B . * < ~ . * ,  L2G a> 
u = l  . = 1  

3 

- -  2 B.<IP. ,  L~G ~*> ~- <G A*, (a 2 - -  L ~) G A> 

(19) 
Here 

3//.. --= cr 2 --  <~g.*, L~hrJ.> 

Let us now require stationarity of jA under variations of B~* and B2*. It 
suffices to study ~A/~BI* = eA/~B2* = O. This yields 

B~ = --(~[J1 hk, L~GA>/Mn , B~ = --<}g2*, L2GA>/M2~ (21) 

We can therefore rewrite A, eliminating B1 and B2, and 

A = Ba*BaMaa - -  Ba*<k~ta *, L~G a> --  Ba<G A*, L ~ 3 >  -k- Z a (22) 

Z A = <G A*, ( ( ~ - - L  ~) G A> - -  ~ (l<kg~*, L2Ga>i2/M~2) (23) 
i=192 

Finally we vary jA with respect to B~*. The result is 

Bs(G A*, LaWs) == Z A (24) 

We have a new form for the variational principle 

Jc  A =  rn-- ~ [M~a ZA J (25) 

Recall from Eq. (20) that M33 is an explicitly known function. The trial 
function enters in the quantity Z ~ as well as in (G A*, L2~P3>. 

This principle has been arrived at by varying the amplitude of  the three 
current states for arbitrary G A orthogonal to these states. To achieve this 
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orthogonality, we start with an arbitrary trial distribution F r and project out 
the part that lies in the space of the current states. Thus 

3 

G A--  F r -  ~ ~ . ( ~ . * , F  r)  (26) 
~=1. 

Now if Jc  A is stationary, the quantity (Jc'~) -1 plus a constant is also 
stationary. Hence it suffices to vary the structure 

Jz A =I - - ( G  A*, L2~3)(g-/3 *, L2GA)/Z A (27) 

We summarize what is involved in a practical calculation of the Laplace 
transform of  the density autocorrelation function. One starts with a trial 
distribution, containing parameters or functions of a restricted class. One 
forms the antisymmetric part and then constructs the part G A that is ortho- 
gonal to the current vectors. The parameters or functions involved in G A are 
varied to make J A stationary. The quantity 

j c  A = _(k2/m2)[M3a _ j A]-I (28) 

is then an estimate of  the Laplace transform of the longitudinal current, and 
thus of  the density autocorrelation function. 

The above procedure has been carried out for the initial condition 
corresponding to the density autocorrelation function where LFo is a linear 
combination of the 71,. For the more general initial condition the numerator 
contains 

<F A, LFo) = i kBa(mKr)  */2 -k (G  A, LFo) (29) 

and the denominator is unchanged. We therefore find the same values for B 1 
and B 2 . The value of  B a is now 

Bs = ( /G A*, LF0> - i k (mKT)  ~/2 Z ) / M a a ( a  "4., LFo) - ik(mKT)V~ (G A*, L2g-/a) 

(3O) 

and 

J = - - i k ( rnKr )  ~/2 ( ikBa(mKT) a/2 ~- ( G~, LFo*))/(BaMa3 --  (q~a*, L2GA)) 

3. G E N E R A L  S O L U T I O N  FOR O N E - B O D Y  A D D I T I V E  
F U N C T I O N S  

To eliminate the one-body additive part in Section 4, we will first need a 
more general solution than that given in Ref. 2. Let 

N 

F s =  ~, ~(p. /k)e  ieqa 
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with the general initial condition r = 0) -~ r We let 

p2(k) = P2(k)/N. 

Then the functional is 

J 
- f l + 

+ Vo f r �9 8p dap -- f (r o + ~bso* ) r dZp (31) ~ ~ p 

Here 

A(k) = f r162 d~p, Ao(k) = f r162 dSp 

s0(p/k) = r § p2(k) Ao(k) (32) 

To get this into a more familiar form, put r = g~ V/r Then 

J ~ p~ (kpr 3Vo 
- -  -- ~ -  ~ m / 2mKT 

• dSp + cr2p2(k) A*A  -- f {g*s o + gSo*} ~ / r  dap (33) 

The terms on the first line correspond to the functional for an anisotropic 
oscillator. Choose k = {0, 0, k} and set 

1 (  a '  3 ) to== 1 k 2 1 (34) 
e = ~  Vo 2 m K T '  (2rnKT) ~ q- m2Vo ' t o o -  2mKT 

Then 

J ~g* ag 
Vo f dap 4- f g*g[to2pa2 -r COo2(p12 + p2 2) + 2e] dap --=N ~-/-~ 

+ a2p2A*A -- f {g'so + gso*} ~/-r d3p (35) 

Let tl-r(nln2% ) be the eigenfunctions of the three-dimensional oscillator 

__�89 tF(nln2n8 ) _[_ �89 + too2(p12 -/- p22)} tttt(nln2nz) (36) 

= ~t(nzn2nz) W(nzn2nz) 

where 

A(nln~nz) = (na + �89 to + (nl + n2 -t- 1) too (37) 

We may expand g as 

g = ~ A(n~n2nz) T(nzn2na) (38) 
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Then we define 

e(nln2na) = 2Vo(e + )t(nln2na) ) (39) 

J -~ = ~ A*(nln2na) A(nln2na) e(ntn2na) + cr2p~(k) A*A 

-- f {g'so + US0*} ~ /~  d3p (40) 

With this expansion we have 

A = f g V-~dap = Z A(nln2n3) r(r/lr/2rt3) 

(41) 

f g* o , /Td> = y, 

So(nln~..) = f 7**(ninon3) So g 7  d"p 

We now have a degenerate quadratic form. The variation of J with 
respect to A*(rtln2na) yields 

A(nln~na) e(nzn2na) + a2p2T*(nln=na) A = So(nzn2na) (42) 

with 

A l 1 + a2p~ ~ [ T(nfl2n3)[2te(nfl2n3) } = ~ r*(nan2na)e(nln~na)So(nln2n3) (43) 

The theory can be put in a more useful form by introducing the bilinear 
generating function 

g(P/P') ---- ~ [~(nln2nJp) u (44) 
n l ~ 2 n  3 

We will later exhibit the explicit closed (Mehler) form. Associated with it 
are the functions 

K(p) = ( g(p/p')[(~(p')]I/z dap ' (45) 
d 

and 

Z =  f d?t/~K(p) d3p= f f c~l/2g(p/p')(~')l/2d~pd3p' (46) 
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The value forA is then given as 

A{1 + a2p2Z} : f K(p) so(p) ~ /~  dap (47) 

The solution for r is 

~ /~  ~(p) ~ g(p) = f H(p/p') So(p')[~(p')]l/2 d3p ' (48) 

Here H(~//7) is 

H(p/p') = g(p/p') -- [a2p2(k)/(1 + ,szp2Z)] K(p) K(p') (49) 

The additional, separable part of the kernel represents the effect of the term 
e2p2A*A in the functional aT. The optimum r for given ~bo(p/k ) gives J 
the value 

[S/N] = - f CSo*~ d3p 

= -- f f  V/-~ so*H(p/p') So(p')[~(p')] 1/2 .3p dSp, (50) 

This represents the solution of the one-body additive approximation 
for a general So(p). For the special case of the density autocorrelation function 
So(p) = 1 -F p2 and 

[S/N] - =  --or2(1 @ p2)  2 Zl(1 -F a2p2Z) (51) 

We now write g(p/p') in a more compact form. We define 

G(pffp~' [l ~o),) --= (2rr sinh 7w)-1/2 exp[--tanh(�89 �88 § p,)2 

-- coth(�89 ~~ k(Pl - -Pl ' )  2] (52) 

The Mehler bilinear generating function (n) is 

- - ~ n  1 / 2  1 / 2  t 
8--~, /2 e T~(OJo Pi) T.(COo Pl ) = G(p~pi']I ~Oo7) (53) /.--d 

n = 0  

Using the parametric form 

1/e(nln2n3) = f =  e -~d'~:2*p d7 (54) 
Oo 

we write 

g(P/P') = ejo oo e - ' ~ G ( p l / P l  ' fl OJoT) 

• G(pffpz' II COOT) G(pffPa' II ~o~) d 7 �9 2V o (55) 



Approximate Solutions of the Liouville Equation. III 307 

4. E L I M I N A T I O N  O F  T H E  O N E - B O D Y  PART 

We now take up the question of improving the one-body theory for the 
L ~ variational principles. We first write 

F * = f N(p/k) ~b(p/k) dp + Gs(pz .." qN/~Y), ~b(p/k) = ~,(--p/k) (56) 

with no restrictions on G ~. Then our functional is 

J = (F**, (a 2 - -  L 2) F*) - -  or(F*, Fo*) -- a ( F  ~*, Fo) (57) 

It takes the form 

3 = an  + (G**, (~r a - -  L 2) G ~) - -  (G  ~, Fo*> cr - -  a(G**, Fo) 

f {~b*(p/k) So(p/k ) -c- c.c.) ~b dap (58) 

Here 

So(p/k) = [ l l 4 ( p ) ] ( ~ * ( p / k ) ,  - - ( ~  - -  L ~) G ~ + ~&> 

= N f {~= + (k" p/m) ~} ~*r d~p + ~%(k) A*A 41 

+ V0 f ~ (a~b/ap)(a~b/ap) da; (59) 

We use the solution of the one-body problem to eliminate ~b(p/Ic). It is useful 
to introduce the phase-space operator 

C(pk/p tk) Hs(P, "'" qN) ~= -Nfp/k)(N*(p'/k), H *) (60) 

The key operator in the analysis is 

1 
O ~ ~ f f  1/[~(p)l*/2 Jf(p/p') C(pk/p'k) 1/[4(p')] ~/2 d/5 @' (61) 

It incorporates the one-body analysis in the kernel ~ ( p / p ' ) .  We will also use 
the operators 

~r = (~= _ L z) O(c~ _ L2) (62) 

and the source function 

Do = Fo -- (o~ -- L ~) •Fo (63) 

The solution of the one-body problem then allows us to write 

[J] = --a2(Fo *, OFo) + (G s*, ( a2 -- L z -- ;Q) G*) 

-- a(G*, Do*) -- ~r(G2*, Do) (64) 

8221914-3 
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The first term is the one-body estimate of the autocorrelation function. 
In the second term the operator L ~ is replaced by L 2 + 37/. F o represents a 
new source term for G ~. In order to improve the one-body theory 
systematically, we now restrict the trials G * to be orthogonal to one-body 
additive functions in the sense that 

<G~*, -~(p/k)> = o (65) 

for any p. We will discuss the construction of such G ~ from general trial 
functions later. Assuming that we have orthogonal G% it follows that 

~G ~ = 0 

Hence 

(G  ~*, Do) = (G  ~*, ro)  + {G ~*, L2Q*Fo), 

(66) 

( c  a*, ~G~) : (6~*, L~OL~C~) 

(67) 

Our functional can be replaced by the normalized functional 

[J] = --cr2(Fo *, ~Fo) --  cr2((G ~, Do*) (G ~*, Do) / (G ~*, (a ~ - -  L 2 --  2YI) G~)) 

(68) 

It is obtained in the usual way by replacing G ~ by AG ~ and varying the 
amplitude A. This is the goal of  our analysis. The one-body estimate is the 
first term and is not subject to variation. Varying G ~ leads to an improvement 
of the estimate of the correlation function - - ~ ( F  ~*, F0), which is the exact 
stationary value of J. 

Functions G ~ that are orthogonal to all one-body functions may be 
generated by a simple projection technique. We start with a general trial 
function Fr(px "'" q~/~) and form 

G ~ = FT -- f B(pl/k) N(px/k) dpx (69) 

We impose the condition 

0 : (N*(p/k), G ~) 

: (N*(p/k), F r )  --  f (N*(p/k) N(pl/k)) B(px/k) dpx (70) 

Since 

(fi/*(p/k) 2V(pz/k)) = 3(p -- P0 N4~(p) + q~(p) 6(Px) P2(k) (71) 

we have a soluble integral equation for B(p/k). The result is 

NB(p/k)  ~(p) = (2V*(p/k), Fr )  -- ~b(p) P2(k)(p(k), Fr ) / [N  -}- P2(k)] (72) 
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We note that the previous considerations apply almost verbatim when 
we put the antisymmetric (odd-parity) part of the distribution function at the 
center of the theory. We have 

(c`2 _ L ~) F A = c`Fo A _ (LFoS/a)  ~ (rTo A, To A = Fo A - -  (LroS/c` 2) (73) 

with the symmetric part given by 

P = (ro"/c`) - -  (l/c,) L F  ~ (74) 

The starting point is the stationary variational principle 

j a  ___ (Fa,,  (c`2 _ L 2) F a) _ ~(F a,, ro,~) _ e ( F  A, T2, ) (75) 

The stationary value is 

[Ja] = --cr<F*, T0a*> = --cr<F A, ToA> q- (1/c`)<F a, LFo" > (76) 

If  the initial condition is Fo A = 0, F0 ~ = p(k), [JA] is the longitudinal current. 
From jA we now put 

where 

F A =  ~N(p/k) Ca(p/k)d/5+GA(pl .-. qN/c`) 

C A ( p / k )  - -  - -  r  

The steps are the same. We replace F o by To a, D o by 

DoA = To A _ (~2 _ L 2) O r o  A 

Ej = - 2<Tf , O r o >  - 

and 

<G A, T2*><a A* , r0 A) 
(GA*,  (~2 __ L ~ __ iVI) G A )  

(77) 

(78) 

(79) 

with the same operators Q and 29/. 
Considerable analysis is thus contained in the operators 37/and Q that 

occur in Eqs. (63), (66), (78), and (79). The function ~(/3/~') occurring in 217i 
and ~ summarizes the explicit effect of eliminating the one-body part of the 
distribution function. We can easily find better estimates of the correlation 
function. For example, the function Fr  that is used in Eq. (44) may be con- 
structed by the moment method as a series of powers of L 2 operating on Fo �9 
The leading term already contains two-body additive terms. The result is 
given in terms of a few (complicated) integrals. However, we do not enter 
into the details of such calculations here. 
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5. C O N T I N U E D - F R A C T I O N  V A R I A T I O N A L  P R I N C I P L E  

In the previous sections we discussed the construction of modified 
variational principles using projection operator techniques. In the Section 2 
we paid explicit attention to projecting out the vectors corresponding to the 
conservation laws in the odd-parity theory. In the Sections 3 and 4 we showed 
that it was possible to project out the entire one-body additive space of func- 
tions. This corresponds to an infinite number of linearly independent func- 
tions in phase space. The strategy of projection operators is at the basis of 
Mori's continued-fraction representation of the Laplace transform of cor- 
relation functions. A series of linearly independent functions is formed by 
successive operations of the Liouville operator in the initial distribution. 
One projects out the portion of the space orthogonal to the (finite-dimen- 
sional) vector space that is formed. We will now show that this technique can 
be used in conjunction with stationary variational principles. 

The advantage of the variational approach lies in the residual term 
after a finite number of projections have been formed. This term has the 
same structure as the original variational functional. Thus a termination 
can be performed, for example, with a free-particle trial. The resulting 
autocorrelation functions then have the correct branch cut characteristic of 
free-particle streaming. 

To simplify the discussion, let us study the inhomogeneous equation 

/~f = t/t o (80) 

where/~ is a linear, self-adjoint operator. For simplicity let 

(To*, To> ----- f qbT0*T 0 dF  = 1 (81) 

In the usual moment method we seek to approximate the inverse 
operator R-1 by constructing a finite vector space from the vectors 
To,  ~T0  ..... /C"-IT 0 . Consider the norm-independent principle 

J --= - - (  f , T o ) (  f0* , f ) / (  f * ,  112f) (82) 

Put 

f = AotPo + f t  (83) 

with f l  orthogonal to To in the sense ( T o * , f t )  -~ O. We can construct a 
suitable f l  from an unrestricted function G1 by writing the projection 

f l  = G1 - -  T0(To*,  61)  (84) 

Now vary Ao andAo*in the Schwinger principle for any F 1 . ThenSJ/SAo* = 0 
yields 

A0 ----- - - (A*,  K f l ) / ( f l * ,  K T o )  (85) 
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and 

J = [Koo -- ((R~o*,..~)< f~ ~', KTo)/ ( f** , *  Kf~>)] - 1 .  (86) 

where 

Koo ~ <~o*, RTo> (87) 

In the next step we define a new normalized vector constructed from 
KFo and made orthogonal to Fo.  Let 

T1 = (RTo - Wo'~Koo)/llR~o -- ~olKoo [j (88) 

We define matrix elements as 

Kis = (u R~u~) (89) 

We now write 

A = & %  + A  (90) 

with 

<f2*, ~o> = <fz*', ~z> = 0 (91) 

Inserting this into J and performing 8J/SAl* = 0, 8J/SA, = O, 

A1 = --<f2*,/~Tf~)/<f2*, Kt/'r (92) 

KloK; .]-1 
ILK~176 -- K1, --  (<Rg-rl*,f2><A *, RWx>/<./'2*, RA>) J (93) 

It is clear that one can repeat this procedure. The actual variation is made 
by choosing a trial GM and constructing the associatedfM that is orthogonal 
to the moment  vectors 

M'--I 

fM = G M -  ~ tIl,~<~-I'n*, GM> (94) 

The only part that needs to be varied is the last structure 

<R~*-I ,f,>f~*, Rrff ~-t>/<f ~ *, Rfr> (95) 

We can put the matrix elements into a more succinct form. Introducing 

= R -- Koo~, <Sgo*ASr'ro> ~- A (96) 

we have 

Ko~ -~ <To*RTI> = ~/llDTo If, &~ = 1111BTo II~[B -q  § KooB --~] (97) 
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Let us now apply the continued-fraction variational principles to the 
antisymmetric formulation of the density autocorrelation problem. We take 
Fo A = 0, F08 = p(k), and 

(a  s - -  L 2) F A = - - L p ( k ) / ~  (98) 

Toget this into the standard form, put 

I s  : a 2 - L 2, f =  aFA/][I L p  11t, 7Io = --Lp/[] L p  II (99) 

Let us look at the principles in sequence. If  we work with the variational 
functional J1, we make a trialf~ starting with an unrestricted G1 from 

A = G1 -- hUo<kg0*, GI> (100) 

This corresponds to a total distribution function 

f = {Ao -- <~o*, G~>} t/r o + G~ (101) 

Let us now suppose that the trial G~ is one-body additive. Since 7to is one- 
body additive, so isf. Thus with functional variations of G1 the theory would 
not  be better than a one-body functional variation using the starting func- 
tional J. 

On the other hand, if we work at the level of the functional J~, we start 
with an unrestricted G2 and construct 

(102) 

This corresponds to a trim distribution for the starting functional 

f ---- {Ao -- (~o*, G2)) ~rto + {A1 -- (~1"G2)} 7-ix + G~ (103) 

Now 5ul is proportional to (R -- K00~) 7"t0 and the term L~TJ 0 contains two- 
body additive terms. Thus if we use a one-body additive trial function for 
G2, we go beyond the limits of one-body theory. There is, however, little 
point in carrying out such a calculation since we have already done most of  
the work in Section 4. After eliminating the one-body part we need only take 
a trial constructed from L~Tto and made orthogonal to all one-body func- 
tions. 

Naturally, the trial functions discussed thus far are all inferior to a trial 
with general functional veriation of a two-body additive function. This 
yields Eq. (40) of Ref. 1 which will be discussed in more detail in the next 
paper in this series. However, it is impossible to solve the integrodifferential 
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equations of  the two-body additive approximation exactly. The variational 
framework of this and the preceding paper allows one to examine a variety of  
approximations intermediate between the one-body theory and the full two- 
body theory. 

When one proceeds to the level of the functional Ja even a zero value for 
the trial G8 implies a trial F that contains three-body additive terms. This is 
a stage in the ordinary continued-fraction variation. We can easily do better. 
Thus we can take the trial G~ = --(a ~ -- Lo2) -1 (Lp(k)/cr), Lo = ~ ,pJm Ol~q~ . 
This is a free-streaming trial and the density autocorrelation function 
becomes exact in the limit of zero interaction, in contrast to the ordinary 
moment method. This choice for G3 is one-body additive. While it leads to a 
straightforward estimate of the density autocorrelation function in terms of  
simple known integrals, it is possible to make a better theory. We merely use 
the theory of Section 4 and choose for the trial function a series of powers of  
/~ applied to 7to . This function is then made orthogonal to the space of one- 
body additive functions. 

For  completeness we now set down the continued-fraction variation 
principles for the ordinary Liouville equation. This is slightly different since 
L is an anti-Hermitian operator. We start with 

J ---= --(F_*,  Fo)(F*_o, F)/(F_*(a + L) F)  (104) 

If  (F*_, Fo) = 1, F o ~- ~o ,  we find a functional 

Jx = --[~ -1- Loo -- ((G-*L~o)<LWo*, G)/<G_*(cr + L) G))] -1 (105) 

where 

G ---- F r  -- Wo(~*- ,  Fr ) ,  Loo = (Su; * , LTo)  (106) 

At the next step we introduce 

~ = ( L  - Loo i )  % / l l ( L  - Loo~) Vo !1 (lO7) 

The last structure in J~ may be replaced by 

((G_*, ~15(7-r1 *, G)/(G_*, (or + L) G))H(L -- Loft) W0 II 2 (108) 

Thus the next functional is 

1 lt(L -- Looi) ~o I12 
- - ~ =  c r + L o o - -  

cr + L n -- {(H_*, LWzS(Lg"~-*, HS/(H_*,  (~ + L) HS} 
(109) 
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where 

H -~ Fr -- k~t0(Wo *, Fr) -- WI(~'*,  Fr), 

This continues in a self-evident manner. 

Eugene P. Gross 

L n = ( ~ - *  LTtl) (110) 

6. S U M M A R Y  

In this paper we have extended the considerations of Ref. 2. There we 
illustrated the utility of stationary variational principles for the Laplace 
transform of the Liouville equation. One obtains theories geared to the 
estimate of particular autocorrelation functions. For the ordinary Liouville 
equation one has a straightforward method of obtaining renormalized 
theories. The technical step of integrating by parts in the variational func- 
tional is a very efficient way of using the exact equilibrium hierarchy connec- 
ting the bare potential and the equilibirum correlation functions. We also 
showed in Ref. 2 that the parity-even and parity-odd parts of the distribution 
obeyed an equation governed by the square of the Liouville operator. In the 
variational formulation this is equivalent to always having the optimal odd- 
parity part of the distribution for an approximation even-parity part and 
vice versa. This formulation, however, involves the bare potential as well as 
equilibrium correlation functions. 

In the present paper we have extended this projection technique. By 
projecting out a limited number of basis vectors in phase space we can find 
new stationary variational principles which guarantee results in accord with 
exact properties of the system. Thus in Section 2 we found variational 
principles for which the differential conservation laws must be obeyed. One 
operates in the vector space orthogonal to the space spanned by the vectors 
that enter into the conservation laws. In Section 4 we projected out the 
entire space of one-body additive functions for the L ~ formulation. In 
Section 5 we found functionals that apply to the space orthogonal to a given 
number of vectors used in a moment expansion. This led us to continued- 
fraction variational principles. 

All of these techniques are conservative in the sense that they 
aim at consolidating known exact results and procedures. They aim at 
formulating the theory so that the starting point for approximations already 
incorporates significant knowledge. It is analogous to eliminating exact 
constants of the motion in classical mechanics. Thus far the approximations 
envisaged have been based on a division into one-body additive, two- 
body additive functions, etc. This is because our starting point was the 
development of theories based on approximations to the Liouville distribu- 
tion that fit the exact microscopic initial conditions and short-time evolution. 
It is dear, however, that the variational formulation of Ref. 2 and the projec- 
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tion techniques o f  the present paper  are no t  tied intrinsically to that  approach.  
For  example, one can develop hydrodynamic  approximat ion schemes in 
which general functions o f  coordinates are admitted, and the restriction is to 
functions involving a few powers o f  particle momenta .  Alternatively, the 
analysis may  be based on divisions o f  L 2 into diagonal and off-diagonal 
parts. These matters remain to be investigated. 
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